Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 39529
1.  
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между A и С равно  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 0,5 рас­по­ло­же­на точка:

1) A
2) B
3) C
4) D
5) E
2.  
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  41°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.

1) 24°
2) 32°
3) 49°
4) 45°
5) 60°
3.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1)  минус 3k мень­ше минус 3t
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
3) 3k боль­ше 3t
4)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 3 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 3 конец дроби
5) k боль­ше t
4.  
i

Ре­зуль­тат раз­ло­же­ния мно­го­чле­на x (a − 6b) + 6ba на мно­жи­те­ли имеет вид:

1) x плюс 1
2) x
3)  левая круг­лая скоб­ка a минус 6b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a минус 6b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка a минус 6b пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 6b пра­вая круг­лая скоб­ка
5.  
i

Из точки А к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и АС и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти О. Точки В, С, M лежат на окруж­но­сти (см. рис.). Най­ди­те ве­ли­чи­ну угла AOB, если \angle CAO = 25 гра­ду­сов.

1) 25°
2) 45°
3) 60°
4) 65°
5) 75°
6.  
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,3
b1165,2
1) 89
2) 32
3) 29
4) 26
5) 22
7.  
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 5 : 6 : 7. Най­ди­те гра­дус­ную меру угла ABC.

1) 100°
2) 70°
3) 50°
4) 60°
5) 140°
8.  
i

Среди дан­ных утвер­жде­ний ука­жи­те номер вер­но­го.

1) Число 451 крат­но числу 5.
2) Число 9 крат­но числу 35.
3) Число 2 крат­но числу 14.
4) Число 116 крат­но числу 1.
5) Число 43 крат­но числу 0.
9.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  дробь: чис­ли­тель: a в квад­ра­те плюс 6a, зна­ме­на­тель: a минус 1 конец дроби минус дробь: чис­ли­тель: 7a, зна­ме­на­тель: a в квад­ра­те минус a конец дроби имеет вид:

1) a плюс 7
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a минус 1 конец дроби
3) a минус 7
4)  дробь: чис­ли­тель: a, зна­ме­на­тель: a плюс 1 конец дроби
5)  дробь: чис­ли­тель: a в квад­ра­те плюс 5a плюс 1, зна­ме­на­тель: 1 минус a конец дроби
10.  
i

Пря­мая a пе­ре­се­ка­ет плос­кость α в точке A и об­ра­зу­ет с плос­ко­стью угол 60°. Точка B лежит на пря­мой a, при­чем AB  =  4 ко­рень из 2 . Най­ди­те рас­сто­я­ние от точки B до плос­ко­сти α.

1) 2 ко­рень из 6
2) 2 ко­рень из 2
3) 2 ко­рень из 3
4) 4 ко­рень из 6
5) 4 ко­рень из 3
11.  
i

Ука­жи­те об­ласть зна­че­ний функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной гра­фи­ком на про­ме­жут­ке [−2; 4] (см. рис.).

1) [0; 5]
2) [0; 1] ∪ [3; 5]
3) [0; 1) ∪ {2} ∪ (3; 5]
4) [0; 1] ∪ {2} ∪ [3; 5]
5) [0; 1) ∪ (3; 5]
12.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те минус 22x плюс 121, зна­ме­на­тель: x в квад­ра­те минус 11x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 121, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: x, зна­ме­на­тель: x плюс 11 конец дроби
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 11 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
3)  дробь: чис­ли­тель: x минус 11, зна­ме­на­тель: x плюс 11 конец дроби
4)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 11 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 11 конец дроби
13.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  арк­си­нус левая круг­лая скоб­ка тан­генс дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка минус дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби .

1) 0
2)  минус 2 Пи
3)  Пи
4)  минус Пи
5)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
14.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 12x + c, равно −11. Тогда зна­че­ние c равно:

1) 47
2) −47
3) −119
4) 36
5) 25
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 3 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те .

1) 13
2) 9
3) -13
4) 26
5) -9
16.  
i

В ромб пло­ща­дью 18 ко­рень из 5 впи­сан круг пло­ща­дью 5π. Сто­ро­на ромба равна:

1) 8
2) 18
3)  дробь: чис­ли­тель: 9 ко­рень из 5 , зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 18 ко­рень из 5 , зна­ме­на­тель: 5 конец дроби
5) 9
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; 4 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1)  минус целая часть: 3, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4
2) 1
3)  целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
4) 4
5) 16
18.  
i

Сумма всех на­ту­раль­ных ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка 6 минус x пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка x плюс 7 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка x минус 17 пра­вая круг­лая скоб­ка в квад­ра­те \geqslant0 равна:

1) 21
2) 23
3) 38
4) 40
5) 7
19.  
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  левая круг­лая скоб­ка x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 14\geqslant2x в квад­ра­те минус 6x.

1) 27
2) 12
3) 4
4) 14
5) 28
20.  
i

На ри­сун­ках 1 и 2 изоб­ра­же­ны пра­виль­ная тре­уголь­ная приз­ма ABCA1B1C1 и ее раз­верт­ка. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы, если длина ло­ма­ной ACA1 равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та и точки A, C, A1 лежат на одной пря­мой (см. рис. 2).

Рис. 1

Рис. 2

1) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 36
3) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 18
5) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
21.  
i

Най­ди­те сумму целых ре­ше­ний (ре­ше­ние, если оно един­ствен­ное) си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний 10 минус 3x боль­ше или равно x в квад­ра­те , левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0. конец си­сте­мы .

22.  
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 14, зна­ме­на­тель: x в квад­ра­те минус 8x плюс 22 конец дроби минус x в квад­ра­те плюс 8x=17.

23.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна  целая часть: 28, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 8 , впи­са­на окруж­ность. Сумма двух углов тра­пе­ции равна 60°. Най­ди­те пе­ри­метр тра­пе­ции.

24.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка минус 10 умно­жить на 4 в сте­пе­ни x плюс 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка \leqslant0.

25.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 2 в сте­пе­ни левая круг­лая скоб­ка 3x минус 23 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка боль­ше 10 в сте­пе­ни левая круг­лая скоб­ка 2x минус 13 пра­вая круг­лая скоб­ка .

26.  
i

Най­ди­те 4x_1 умно­жить на x_2, где x_1, x_2  — абс­цис­сы точек пе­ре­се­че­ния па­ра­бо­лы и го­ри­зон­таль­ной пря­мой (см.рис.).

27.  
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=35 гра­ду­сов, \angle ABD = 80 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...

28.  
i

Най­ди­те (в гра­ду­сах) наи­боль­ший от­ри­ца­тель­ный ко­рень урав­не­ния  синус в квад­ра­те левая круг­лая скоб­ка 5x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.

29.  
i

Из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми 140 км, од­но­вре­мен­но вы­ез­жа­ют два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля на 10 км/ч боль­ше ско­ро­сти вто­ро­го, но он де­ла­ет в пути оста­нов­ку на 20 мин. Най­ди­те наи­боль­шее зна­че­ние ско­ро­сти (в км/ч) пер­во­го ав­то­мо­би­ля, при дви­же­нии с ко­то­рой он при­бу­дет в В не позже вто­ро­го.

30.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го ре­ше­ния на ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 24, зна­ме­на­тель: 5 плюс |16 минус x| конец дроби боль­ше |16 минус x|.

31.  
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 450 г и 300 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.

32.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 100 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 20 конец дроби .